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Abstract
-. . The Féldt—éilmer congeneric reliability coefficients make ig possible
K to estimate the reliability of a test compoéed of parts of unequai, uﬁ;
known iength. These coefficients include Kristof's’coefficient and
Cronbacﬂis alpha‘coefficient as special.cases. In this paper the app}oxif
mate standard errors of the Feldt-Gilmer coefficients a;e derived via a ' ’
method that uses the multivariate Taylor's eipansioﬂ; Monte Carlo sinti-
lation is employed.;p corroborate the theoreticalrgpproximations for
eiéhc-hypothetical tests. It is shown that gPe Feldt-Gilmexr coefficiean
- ;re~appropriate ;ith both congeneric.and tau-equivalent pérts. Their ‘
superiority over the Kristof coefficient chreases with ‘the number of l

parts (K 2 4). Their standard errors also compare favorably to that of .
§

Cronbach's alphﬁ when applied to tests with tau-equivalent parts; .
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Measurement situations sometimes occur in which a multiple-part
measure can be assumed to consigﬁ of -congeneric parts,.but not essenttally
tau-equtvalent parts. Congeneric parts are’parallel in content and mea-
sure the same attributes, but differ in length. Tau-equivelent parts are
parallel in content and functionally equal in lehgth. More formally,
parts jand h are congeneric if their true scores satisfy the relation

T. = aT, + b , where a is a constant not necessarily equal to 1.0 and

3 h

b is a constant not necessarily equal to 0 . Parts j and h are tau-

>

equivalent if a = 1.0-. For both types of parts error score variances

and observed score variances may be heterogeneous from part to part.

For congeneric parts the true score rariances are, in general, heter?-

geneous. For tau-equivalent parts true, score variances are homogeneous.
Examples of congeneric patts are not difficult to find. In reading

' tests the passages often vary in length and in the number of items éase&-

on each passage. If these numbers of items vary appreciably, the passage

seores will very likely be congeneric. The ratings of individual judges

°

‘on a panel will: be congeneric if some judges concentrate their ratings

in the midd‘ﬁlof the scale ?nd avoid extreme ratings, while others spread
their ratings over the full range. In an essay test, if"the several
ﬁquestions differ in difficulty or are given different point values by

the examiner, the‘scores on the various questions might well be con-
generic rather than essentially tau-equivalent.

N

‘el
i
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Coefficient alpha [Cronbacﬁ, 4951] provides anfacceptable estimate

>

4

of reliability if the part scores are essentially tau-equivalent [Novick .

R / . ,
ana Lewis, 1967]. Horst's‘coeffiéient [1951] will serve for congeneric . . -

parts if the number of items can be assumed to represent the effective

, or functional length of each part. In the case of ratings and essay
- }‘ - »

' 5 a8
tests, howevef%-the lengths of the parts cannot be inferred from any *

obvious feature ofi the parts. In such situations, ‘one must use one
- : .

‘or another of the approaches develeped by Feldt [1975}, Kristof [1974],

or Gilmer and Feldt.[1981]t
The first purpose of this study was to develop approximate standard

error formulas for the last two of these congeneric reliability coeffi-

<. . P

cients. The basic technique used for this purpose is the\"delta" method

~

of Kendall and Stuart [1969, Volume I, Chapter-10]. This method makes :

it ﬁbssible to aﬁproximate the standard error of certain’statistics (to .

! / _4
order'N‘l) even though the sampling distribution of the statistic is

unknown. The second purpose was to vérify the comparative values of
these standard errors’through'a Monte Carlo simulation o% the sampling
distributions of the coefficients. The last purpose was to draw some
conclusions régarding the choice of estimates, on the basis of their .

bias and standard error.

<

The Congenebic Coefficiénts

Because the derivationb of these coefficients have been pv. =>nted

in detail elsewhere [Gilmer, 1981}, they will not be repeated here.

5] : “
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However, the notational scheme and the structure of the congeneric model
’ s

" must  be'made explicit. ° . -
The congeneric model can be specified-as follows for a test that
consists of K parts: .
R SRR ‘ ,
~T=T1+T2+T3+'---+TK
2
E-E1+E2+E3+~_-.+EK )
i .
X=T+E
X,=T,+E,=AT+b, +E’ (=1, ... ,K
: Ry =Ty E TR R AL » )
A, = 1.0, A,> O
3 S I . 1 R
£b, =0 -
j -

- In this representation X, T, and E are the observed, true, and_ error

-

scores for the total test, respectively; Xj . Tj , and Ej G=1,...K

a = .
are part-test observed, true, and error scores. The Xj are constants
T - P v

which tepresent the proportions of the total test true score that are con-

tributed by the various parts. They may be viewed as the "proportionate

P 4

functional lengths" of the parts. .The bj are constauts which make allow-

ance for the differences in mean sccre cn the parts, beyond differences ’

arising from variatlon in part-test length. The error scores, Ej , are

assumed to be mutually independent and independent of true scores. The

1{near relationship among the part—test‘true scores implies that they are:

perfectly correlated with the true scores on the full test.




Addﬁtional parameters of 1mportance are as follbws:

-

oij = covariance of perts i and j

33 = variance of part j

-

= total test true score variance, -and

otal test observed score variance.

-
-
.

Gi{ven the independence of E, Ej , and Tj the observed score

variances and covér;ances are as follows:

22 . 2
5 | qjj onT + oEj €| ' 1, . . ., KJ,
- . 2 .

& Oy " xi”AjoT (1 413)

é 1}

v

is
2 2
z oy = A Y L Ai(l—ki)o,rv )
1#1 e '

B S

nate by Cj the quotient obtained by dividing the sum of covariances in

row j by the sum of covariances in row £ . Let Y = xz(l-kz). Then,

C,= £ & £5.. = r@a) 'X‘(l—‘i)ra‘iu-i“) ¥
1 j*llj/j#!.j 1 1/z 2 1 1/
c = Ty = 1.0 - . .

* m 5/3 ot

s oo

o= t8, /18, & hak)/tat) - Sat) /T
L K j"xlqj/j#zj . K x/z 2 K x/

-

The total of the covariances in row i of the part-test covariance matrix

e >
‘In thé part-test covariance matrix for any examinee sample, let the
& ' =

. "I-. ’ L .
) row with the largéﬁt sum of covariances be designated as row £ . Desig-

[
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Consider the pé!f of functions: : . N

° K ’
) = - l : 02 - - 2 = -]
fI(?) 7 + 5 ] 3 .25- Cj“ 0, and tla) -

£ @ =K-1-% / 25¢c3 =0.
a® =375y i (1b)
One or the other of these functions must be solved for Y ,- the choice

being dictated by the algebraic sign of fI(,25). The solytion for Y is

‘then substituted into the following fermula to obtain an estimate of the }
. A3
L .

, total test true score variance:

a2 = . -
2" g %1,/ 2. | g @

Using the variance ratio definition of reliability,.we then obtain -

r

the first congeneric coefficient: .

Tr " e %1,/ ®ED. _ 3
For the second congeneric coefficient, designated rF£ , we again
; . ‘ P
identify the row with the largest sum of covariances as row £ . We
_.then obtain the foilowing quotients: ‘ .
L
-8, T A
D j+1 b1y - . ' :
. ,1 T3 .
; g M i}
. z e " .
5 j#Z 23 82,
2" 1 8 : -
TR : %
G ©
L] .
nz Ji"——— - 1.0
‘ ._j*z %8s :
20 70‘7 o . 777;
[ D j*x j am 14 - ——
N kK~ L3
e M f

N



‘l. ) d
The second congeneric.coefficient is then defined as
-l 2 2 A - .
ID 95 < 26, , - '
-'(1)2°"‘2l3~-", @)
Ip R ex."'~ . . ..
— ;\7

r
. "F2 ; 2.
D))" -
o ep® -y
The last congeneric coefficient considered -in this paper is that
To,abply this estimate

“

derived by Kfistof [1976] for a three-part test.
anger test, one must combine parts and redure the
L) T

of reliability to a 11
81389)"

G199,3.*

instrument to three parts. The formula for Kristof s coefficient is
@185 * :

&£

M o = -~
K CARICARICANT
If a test consists of only three parts, sample estimates Ty o Tpo ° and

’
°
¢

*
-

Ty will be identieal
Approximate Sampling Variances
A method by which the sampling variance of a statistie can be deter- |
mined when the sampling distribution is unknown is presented by Kendall
and Stuart [1969, Volume I, Chapter 103 This method, called the delta

method, is applicable when the statistic of interest is a function of

o

"simpler" statistics, the sample values of which are always greater than

~

zero. With sufficiently lurge samples, this condition can b& met in the
The delta method uses thé initial terms in the Taylor ‘expansion of
P

» X)' and a =

present context.
- ’xz ] o s s

L}

e

a function of several variables. Let X = (X1
(al > 8y-5 ser 5 8 )' . Then the terms through the firdt derivative are:

o -
P
£(X) = f(a) + E(Xi-eizfi(_)




. . . " {‘ .

Subtracting f(a) from both sides, we’g\e\k_/ . . .

- e . . . p ) ‘ » ) . *

: . ) ) _ Lo

| g £(X)-£f(a) i(xi ai)fi(-a-) S

- - +and squaring both sides yields the relation y
. 4 2 pp . . ) b
(£(X)-f(a)]” = ii(xi-ai)(xj aj)fi(a)f @ . (6) :

. " 1f a = E£(X) and &[f‘?X)]ﬂ- f(a) , then taking the expected value of P

3 .

bot:h sides of (6 ) gives an Expression for the variance of £(X) :

Va?[f(X)] = EIEE(Xi ai)(xj aj)f (a)f’(a)] '
ij

(N
. . * = zz[cov(xi’ j)fi(a)f (a)] -
‘ . . ij
S Define £(X) = § and £f(8) = g . We then have ~
var[f(x)] = I &g . eas . Cov(Xi,X«j) . . (7) :
- 19 20 { ] j . -
L
This last équation is the same as equation 10.12 of .Kendall and
Stuart [1969]. " A : .
.. . In the context of this paper the Xi repteseni the sampie variances .
~ - - ? .
: and covariances of.the part tests, i.e.; the elements in the sample . .
* ” -

variance-covariance matrix; the 0 { are the population variances and

:
L]

covariances of'the, part tests. The f(X), in our case, is any orie of the

-

reliability est:ima}:e's discussed previously. Using r as a particular

reliability estimate and p as its population counterpart, we obtain

from (7): . . ' ;
Var(r) A = 2.2 [%ST . %g_ . Co\ﬁ‘(xi.xj)] D - (8) - ‘
13 1 j : . ; -
i ’ ) L




It is necessary, then, to determiné Cov(x1 Xz),.the covariance of
* 4

two covariances., ‘In particular, we need Cov(Sij,S ), where i j,m n, =

~ 1, ***, K3 K= the number of\part tests and S represents thé sample
> ~

~

% estimate of 0., .. - » : L e T
13 - o) )
7 A .

The daterm.nstion ofﬂfov(sij;s ) is not straightforwardt
Kendall and Stuart deve‘op the covariance of two: covariances with the .

\
use of Fisher's k=statistics LFiaper, 1928, in Kendall & Stuart 1969,

W8

Volpme 1]. The end, result of this extended derivation is as follows: e

3 < %24n + %10%3m ‘ '

o cov(sijb S ) 7' N_l ~ B '(9) ‘
1 » » . L

The variance obtained from ( 8) is'mot exact. It is correct ;a the

.

Order of N-l * Therefore, the approximation and the true value of the L

sampling variance may differ by ar amount that involves N2 N3 s e !

~ in the denominator. With N relatlvely large, day N > 100 the difference -

¢

would probably not be of great importance. ’ T \r o . P

4/”‘—_;;;;;Zfié;;-fariqnce of Ppy ' . . ) )

b ) \

As in the foregoing section, we presume that the .divisor for Qj is

the maximum sum .of row covariances. Withbut loss of generality we shall
\ R :

assume tﬁ}s maximum occurs for row 1. }Since the delta method is applied .
to a function of parameters, ‘the folloﬁihg relationships are defined - . -
among the pafaméterg in the population variance-covariance matrix: ..

- “ e
. M s
. . . '
- »
.
.
.
P r .

.e ‘a
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'

A
R

=

AN . .
s - The symbol Yj is used here, rather than Cj ‘, to emphasize that these

are ratios of parameters.’' The population equation corresponding to

equatfons (la) and (1b) is - ; .

. h(gij) n S(Fij ,Y) = %-— 1 -_4-_* /,25.\[ - ; . (10)
: ‘ / 25'YYj =0 . : R
j#lv

is al/Y , and the reliabiii;y is

\

: 2
< The true score variance, Og,,

a . 2 .a '
1™ 2 .2, ’
0% - Yoy

——— The variance of the sample estigate of p,, is theh iven by
(>3 h Fl 8

- o RV KV

3p 9P )
/ Var(r..) = , FL . FL . Cov(X X | » " (g
F1 8, 38, :
A b=1 d=1 :
) r T —
’ R .
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7 "-————1
- In this ex?ression KV - K(K + 1)/27,7t:heriotal >number of distinct elements ‘
in the variance-covariance matrix. ';'he paramet‘:ei's'el through eKC arg the >
distinct .part:-test: covariances (KC = K(K-1)/2); eKC + through eKV ar»e the
. part-test\variances. The statistics Xl through XKV are the sample esti-
mates corresponding ‘t:b 61 through eKv . For .example, if\\l( = 4, the fullow-
ing would be défined: ‘ . N
. KV = 10, KC = 6, N ] .
- Y T L - -
8, = %3 X =513
Toey oy X3 =51
% ®, =9 X, =523
O5 = 94 X5 = Sy
0 =0y  Xg =Sy ‘ ’
. ° =i X; *5n
. . % = 92 Xg =5 S
: 8 = 933 Xy = 833 ( .7
8107 % . *10 T Sus. : ,
. Note that the first K-1 terms ate the covariances from r;w L, the covari-
ances 1;n the sum @ - Note also that the elements in the lower triangle s
of ¢he population variance-covariance matrix have not been'include‘d expli-
‘\ citl};.‘ This means tha: when we refer to eb (b=1, °** KV), t:‘hat: is, when _
- we refer ‘to one of the dij , we imply that i< j. This fact, that 1 < j, ‘

. will appear again in this derivation.

.
.
- !
. 3
' }




The covariance of Sij with Smm is, from (9),

+ 0, C

g, o
Cov(S ) = im 3nn-1 in” jm

ij’smn
where N is sample size. Once apFI/aeb (b=1, ***, KV) is found, the

variance of rFl can be approximately determined from expression (11) for

[

any given population matrix and specified N .

The first step in this process is to apply the chain rule to

apFllaeb : ' ] >
-
2
o 2 2
e g o
apF1 - ,SX . X aeb T aeb )
‘ aeb . 36b (oi)Z

This result indicates that we need aoilaeb and aoilaeb .

-

The first partialgderivative is’ sfraightforward:

2 of T o + Lo
30% (iﬂ 13 19

aeb

2if b

14if b

r

=N

90
9

<
o

90

4

aeb

=1, ***, KC

=KC+1, -

, ifb=1, °°

\ 0 ,4fb=KC+1, -

o

14

, KV .

*» KC,

+y KV .

(12)

The partial derivative of aai/aeb is not as direct:,

(13)




12
2{ We have then’, ‘
2
) 02 BOT - 202
X3, T 4fpb=1, -, KC
4
. Oy J
d3p . .
Fl
20 '< (14)
b 2
) P L ALb =KC+ 1, ooy KV.
3 04 °
\ X
Ve need to determine aoi/aeb for b=1, *+-, KC: q -
! da
1 Y
2 %1 Y= -a,
dop g W LW g ke )
) 36b aeb Y2 ' ‘
We now need aallaeb and aY/aeb . The first of these is
% a( L olj)
1 . %1 (16)
%, %, _
= % . 14ifb=1, «--, K-1 .
04f b = K, -+, KC. \
. The determination of aY/BOb involves implicit differentiation because

Y fs given implicitly in (10). We have from (10):

h(oij) - g(oij,Y) = (.,

15
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Therefore, -
dh 4 9 %2 3 90:4 3 %9,
@R e taey wm, Ty Wyt
b b 12 % 13 b 14 b
I - . i a
a0 ,
K-1,K b b

which simplifies to

b

. \ \
dh og ag . 3Y

T + =0, b=1, *°*, KC.
deb aeb Y $6b

[ i

Solying,fgz,va_‘!/jeb“, as required, we obtain:

- f
: 28 o -
- ot m an
36, 38
: Y

Substituting the right sides of (16) and (17) into (15) we obtain: .

g
a8

(18)

where -
1=14fb=1, ***, K-1

I1=041if b =K, ..., KC.

Again, we ne&d two partial derivatives: ’agIBQb , for b =1, ***, KC,
and 3g/3Y . e

e
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Consider first 3g/3Y .‘ From (10} we can obtain:

-
g, afasn M/ BT
¥ - X Y Y]

k¥l

o

- a

3( / .25-Yy,) -&k
’ Y = [ ve ;
2 'ZS-YYk

Thus.,, we have

where

Y

- Y
L . k

19)

N[5 w2 faswy o -

The minus sign is used if Al > .5 , otherwise the plus sign is used.

Now ¢onsider the numerator of (17).. From (10) we can obtain

ag_ - s a( / .25-YYk) .

Ok -
where
23/ +25-Yy,) - vy
- . M \
36y [ 25Ty, 30y, ‘ |
So we have '

B _3_8_- 2 Y . aYk

) By k1 2 [ 257ty LY

(20)

&




|

] . what now remains to be determined is aykl aeb . Applying the chain rule ,

) we obtain: <
oy .
: K
i A 196, - k38, o ... ke )
. 96 L) 2 .
b b a .
1
. And once more we need two partial derivatives: auk/ aeb and 3a / 36b ,
" 1 ]
T b=1, k**, KC. ¢ ’ - S
. . | :
Consider aak/aeb first: \
30, 3(0.q + Goy + e (=0, ) cer + 0 L) :
k Wt o Cx2 - kk® _ kK :
- - =" i<3y (22) <
aeb aoi
: ] 3 \ . g
: ‘ \
- ) 1if k=1 or k = i,
0if k ¥ 1 and k ¥ 3. _ ‘ . R
- . Now ?onsmer aal/aeb :
‘ T ] - 1
aal 3(012 + 914 + + °lK)
ae = ao 1 i < j! (23)
b 13 . ,
' 1if 1 =1 ) L
0if 1 # 1. :
2 Combining (22 ) and (23) into (21) we obtain
57 R 1'% a, P-a Q .
. kK, k2 Kk gcy,b=1, 0, K, ST ,
90 90 2 N
b ij, a; )
o —
. b i
Ed




16 I
’ " where ; ‘ :
¢ ’ ‘ ’
) ) 1if k=3dork=]j
P = '
0 otherwise ° -
» L"
- 4
1if 1 = 1~
Q =
0 otherwise
In summary, then, we have )
[ — “*;f: - - 72~~ R, _
012( . 321 _ 202
aeb T
= 4 , b= 1, =-°, Kq,
apn . ox ﬂ
) b 2 P
~Op
% , ifb=KC +1, -, KV,
o .
X
\
Y- -I:
2 L)
. 80y ( ) (aebo )
. - aeb
¢ where
- /:‘ f11fb=1, .4..’ K-1
i I= L ‘
- - : 0 if b-="K; °**, KC
%g aF—L 4 —k
.2 ’ .25-Y  k#l 2 /.ZS-Yyk
-@L = ¥ : Y . QYk
ey g Sy, e
& -

(26)

27

(28)




. R [
[

§ o 17 "
-
Ay Ay a,P-a, Q ~
ko _k .2 k gy, b=1, 0, K (29)
20, 20 2 :
b i) - a
1
- . where , ¢ . !
. . lifk=1iork = § . -
. P= o, o
- _ 0, otherwise . ! O
) 11f1 =1 { -
Q= : -
a o - 0 otherwise
: Finally, by substituting (26 ) into (25) we obtain  ° =
- e, T . .
] ’ L 2-[1, . 3\ (28 . a}, 2
. ox (? 1 aé) + (32 1 . 7
- — LEE S : o
s | 2 ) 7Y2"*r—%§ T )
: °F1 =¢ — (30) ‘o
! %8y, ' % T L, 1fb =1, .o, KC . .
-02 | » ‘
' L 4 s, If b =KC+1, «.., KV e T
o Y
X ) . ,
where
11fb=1, ++., Kel
I= P .
01f b = K, -++, KC, ) -

and 3g/dy and 33/39b are determined by expressions:(@]%f{ (28 ) and (29).

Clearly, the determination of the theoretical variance of’fgi“iﬁvolves -

/ . . :

‘ coﬁsiderable computation. In the present study computer programs were

déveloped to evaluate the multitude of ‘terms arising for 111lustrative

matrices presented in a later section.
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* theoretical Variance of Ppg

-~

The population counterparts to the D.‘l on.page 5 will henceforth be

» ]
represented by 8 g In this notation, .

il . r

* ‘ a,~0
Bj -—l;u’jﬁl’ "-',K
%27%52 .

ks

3

i ances in row j. -

’ . 3
where a. is defined as before, namely,the sum of the population covari-~

‘ i } . o . o \- ;
S .- The population reliability, analogous to equation ( 4 ); is T

. L2
. 2 Lio . z
2 2 X
z = I .. ’
(z8 j) B j - _ -
By equation ( 8 ) the variance of re, is ’
' . . n Kv e
- var(r ) -”Z 2.?2. * _31112-_. Cov( x.) !
F2 3 i TP Y Y
b=1 d=1 ) . >
. 1
y ? N .g:‘;:!': 5 =
where t:h.e ] { and Xi are as’ defined as befor 1Ag§fn, . o
L 0,6, +0,0 ’
m—— - _im in in im
C°v(< 1jlsm?... N-1

What ve now need to find is apn/aeb for b = 1, +**, KV. We have

. 2
N N 3"% 2 "’“12( .
AN 2 O, ~— = 0. =5
dopy. Op X3 ‘138 l
50, a0y 2.2 » b= 1, eee, KV :
p. O (0y) :
-
f \\ o
N -
~
v - 21
, ’ AN
\\




E' o
i S Equations ( 12) and (13) hold in this situation: ) )
- 24ifb =1, +*+, KC ’
_— x 7?
o E TS :
\ b 1ifb=KC+1, *-, KV, and
B 2 3“: ‘ "
. L vy | Rl s KO
L Eu T | ,
. b .
. 1 0 , if b = KC + 15, KV.
S » Equation ( 14) also holds: - E
| . ,
: 2 R -
30
-— 2 T 2
I . (- °x " 38, 20y )
: ' - , £ b =1, «++, KC
° o T g ‘
’? asz . X
aeb <
’ 2
o7 , )
- . - , if-b = KC + 1, -+<, KC.
\ %x >
o We need to 'find of:/aeb , forb=1, °** , KC, where the crue score . - -
- —varfance may be written T
IE0,s ,
o = i#] .S
T 282 N
. . 1 - _.__J__z.. )
s (zgj)
s AR




1 | : ; ) .
Then we have - ' —
- - ‘\ - ’ »
N ’ 2 -
. - I8 =

s - .2 . ) ( - J 5 l

a 8 9Llo - (Z8,) ¢
2-' 1 - ..J ) . T) ii - ( II oij) . - 30 l E
3oy (zsj) b . 1#), b
' : = * ; - @3 :
aeb 282 2 ' . :
i \ 1 - ':—2 ' ] 7
N ° ‘ (ZBj) e
Clearly, we need the two partial derivatives:
2
B
- . a1 - — -
—— . 8 I oij . (zg )2
. —\R‘% -and ———g J—’\f""b’l’ ros KO ‘

- g 6 .. b ‘\_‘\-\_’__‘,;_——
' 3 Consider the -first:: c e 0 f"“ 7
? ' ———3 51 — . , T T ) o
apy —’——‘_’_—_ﬂ’_—’-“ T ! B a . ‘4 s e .

- 1#1 1j ) 3(2012 + 2013 + + 20!(-1,!() ” -
- . 30 ; 30, (32) -
: b b -
‘ -2, :
Consider the sec;ond:' _
.~ 2 .‘_ 2 o A - ;
I8, LB, .
3\ - _.1_.2. 3 2 ° :
@)Y\ @)Y E
P 96 - Y L2 b=1 y *°°y KC. (33) N
b “b - . ;
.0




. 21
- - \ !
- Then ' N
:". 2
7 9 j 8(}:8 - (23_25_1
’ : (28 )
- , (34) -
o .o -aeb " z8)? ‘
.”_ by j . 7_’,
"So we need a(zsj)zlaeb and azsi/aeb , forb=1, ¢+, KC. We then obtain: |
R ‘ - N
9(ZB,) 3(I8,) 98 =
SRS MPPS ¥t —-L-zzsz—l . (35)
- 30 1 1
b b b
» and : 7::.
- N ) 82 - T
, » - ong? a8 a8 ]
. ﬁ-l £ —1 - 128, 551 = 218, 55t (36)
o b - % % 3% .
7,/,./,‘-4 Now-we need only ?Ej/aeb . We obtain
37
» c.
- - ! ”

24'




- 22
\\-\@ :
iy \ "‘ ‘ \
‘ o We need then a(c:._’-a._"')lilc!“m and a(az—ojz)laom . We know m < n, s%nce ‘
b=1, ++-, KC. So ] !
r’ a(ul-olz) ) 141if (t # nand j = m) or (2./#mandj -'n), (38)
ao,mn 0.othervise,
~ ‘ 3(02—;0“,) ) 14f (2 = n and § # m) or (% =mand j ¥ n), '(39)
h aom 0 Eotherwise . )

Substituting these results into ( 37) we obtain

= I T e G T
r 36? 30 (“2'612)2" s
: . where
(1 1£ (2 ¢ n‘and j = m)"or (2 #mand j = n)
' . I'= 10' ot:herwise' "o ’
; rl/if(!.-'nandjygm) or (£ =mand j ¥ n)

Y

’ 10 o‘tl'_:er;ise

- °
Substituting ( 34); ( 35) and ( 36) into ( 33) we obtain

2
I8 :
1 - 38 28
af1- 2.7y 2,0 4
| ( (’38372> 288,78) T35 (zBy) 7288 55
S %y (8.
° b
¥
28 L
2, 3 )
2 (}:sj ', " 1878 T,
\ - - 3 ’
| (283)

et

25

LY

(40)

\

-~




' 7 H \ -

N [ s
X 5 - 25 ,1fb =1, ***, KC
, T "
. H ,
4 - ’ s
%p2 _ % -
. TR (42)
b 2
. Oy ‘ e
. — Lo ¢ ,ifb=KC+ 1, +-, KV
ch r . . .
where )
L 2O
. o zg? . T ‘
’ Hosl\-——J— ° .
v 2 > ’
' (z8,) .

\
7

and an/aab is determined from (40 ) and ( 41) above.

As in the case .of the standarq:error of Ter? the standard etrror for

~

7]
K. For the illustrative matrices presented later, the

involves a large number of ‘terms for even 5 relatively small value of

evaluation was,,
. e
accomplished via a computer program written for this purpose. .

g /
< ¢ ! -
Theoretical Variance of vy =~ .
. A : A

To apply the delia method to | .

. b * 2
(015913 + 912%23 * 913%3)

\ PR -
. v 2
(0,2)(073)(953)9%

equatioﬁ ( 8 ) must be évaluated for the following six parameférs and

13 -

their associdted sample estimates: ‘ >
‘ ’
\




8 =% X %5
] 82 %13 X, = 5y, :
™ .
o %3 ™ 923 Xy = Sp3 .
: 8 = 11 X, = 5
T 05 ™0y Xs = S5,
: , % = 933 Xg = S33 - .
! 14
- We again obtain
4 2 - -
02 ESE-- 202‘
X 38, 7 O
, ) - ,if b =1,2,3 .
(T 4 S % S
\ - . (43)
aeb ;02 .
T T
— , if b = 4,5,6.
. % ’ '

lThis result indicates we must find adi/aeb for-b + 1,2,3." It will be

easier to follow the subscripts if oi is expreséed as a function of the

- -
x e
I - -

ei s ‘ .
. o2

2. $19 * %)% * 8,84 ’ : ‘ .

| T 5,0,0, . o

)' -

Yy
¢
; 27




:/ l
. /
Letting A (919 + 919

Now,

.

o

2

ifb=1,
ifb=2,

if b =3,

+ 9293) an§ B = 918293, we have

3
e
- 9p ® g a
2 a
A 2 9B -
2 BB pf 2
by %, %,
3, | 52
. b b
B2 ’
' 2B
2BA(20,-0,) - A% =
. b
)
2 2
£0,0,-61) ,2
-5 &
- % b
B
A[2(z6 .6, -82)-A]
- ® i b b .
. Beb
aoi A .
360 = 3o (019 * 919370,95)
b 1 ) :
aoi A
s = po. (9201 * 9,857%,%9)
9%, 2
aog A
36, B, (0,0, +©48,-0,8,) .




Then vwe have

e 2 ’
30 -
S O )

b b b ,
A6, -24B
-’ o
2
BO, -
o:.eb—ZA .
= —o—, 1f b=1,2,3.
%

?

Substituting the foreggqing result into (43) we finally obtain
‘ -

4

<,

2

;12 f—"‘e—-——i’—n - 202
X 2 T
%
7 , b =1,2,3
o)
aoK X
8. = (44)
b 2 )
—-} , b= 4,56
Ox v
\ »

where A = 0162 +,6163 + 626

. evaluating the double summa

Cov(S

©

3 and the © 4 are defined on pages 24-25. 1In
tion ( 8 ) for Var (r,), we again use
K R

g, 0, +0,0

- _im jn in im |
1j’sm) N-1 :

We havz now derived formulas for the approximate sampling variance

of R T and Ty - These expressions involve a large number of

terms, since the index of each of the double summaticns in equation (8)"

runs from 1:through K(K+1)/2 , or Kz(l(+1)2/4 terms in all. Evaluation of

L]

4




: by

the sunnption requires the numerical value of the elements of the popu- ?

lation variance covariance natrix, quantities which are never known in .

practice. Howevcr. they can be evaluated for any postulated matrix. This

has ;ecn done for eight 1llustrative matrices prcscnted in the next }

section. In the follouiﬁg section we‘s;;narize the\resulta of a Monte fi
£

Carlo ltudy undertaken to corroborate the theoretical approximations.

2
34

Illusirative Applicatione of the sumpiing
Variance Derivations a

The foregoing formulas for the squared standard errors were applied

R L L

- to eight hypothetical measures with the §qriance covariance matrices
presented in Tables T and 2. The purpose of these applicctions waé to
gaic some insight into the comparat;ve stability of the three reliability®
coefficientsS The four matrices in Tacie 1 presume four-part tests and

- _ those in Tabﬂq 2 eight-part tests. Within each of these values of K

two of the hypothetical measures have a population reliability (p) of .6

a hiven K and p , one matrix represents tau-equivalent - o

and two other ve“a reliaﬁility of .833 . Within each pair ‘of matrices
\ B . ’
associated wi

pc}ts and the¥othei congeneric parts. (Tap-equivalent parts exhibit
homégeneous iLter-part covarinhces- congeneric -parts do not, except"in
the special case of tnu-equivalence ) The tau-equivalent parts for these
hypothetical measures sre not parallel in the classical sense, since the
variances of th parts are unequal--a phenomenon,wyich implies unequal

*

error variancei.
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- TABLE 1

Yy

o1 ]

Population Covariance Matrices: K = 4
Essential Tau-Equivalent Congene%ic |
S AN 21.375  9.375 9.375°  9.375 38 18 12 6 A = -4
2 —~ | 9.375 18.375 9.375 9.375
p= 833 | 9375 9.375 15.375  9.375 18 2.5 9 45 Ay = .3
9.375  9.375 9.375  12.375 12 9 11 3 Ay = 2 T
s 4.5 3 4.5 A, —'
b ! .
3 48.375  9.375 9.375 9.375 (64 18 12 6 A = b
: 9.375 39.375 9.375 9.375
S 9.375 9.375  23.375  9.375 18 435 9 4S5 Ay = o3
’ 9.375  9.375 9.375 © 20.375] |12 9 26 3 Ay = -2
l_ 6 4.5 3 11.5 A, =1




© TAELE 2

Population Covariance Matrices: K = 8

Essential Tau-Equivalent

p =

.833

6.34375
6.34375

[10.34375 7]

7.34375

2.34375

-

2.34375

5.34375.
5.34375
4.34375

3.34375

£

28.34375
16.34375 .
15.34375

2.34375 .

L

2.34375

18.34375
12.

34375
12.34375
9.34375
6.34375

-

14
4.5

4.5

1.5

32
4.5

4.5

1 ._5
1.5

1.5

10 ,

- W oW P
' hall

-
-

20
4.5
4.5

1.5
1.5

4.5 4.5
4.5 4.5
7.375  3.375
3.375 8.375
2.25  2.25
2.25  2.25
1.125 1.125
1.125 1.125
4.5 4.5
4.5 4.5
16.375 3.375
3.375 19.375
"2 2.25
2.25  2.25
1.125  1.125
1.125 1.125

2:25
2.25 -
4.5
1.5
.75

75!

)
3
2,25
2,25

11.5

2.25
2.25
1.5
4.5
.75
.75

3

3

2.25
2.25
1.5

1.5 11.5

.75
o715

.75
75

1.5

1.5 .

1.125 -

1.125

.75
.75
2.375
".375

1.5
1.5 -
1.125
1.125
75

7.375
.375

1.5
1.5
1.125
1.125
.75
.75
.375
1.375

1.5
1.5
1.125
1.125
.75

.375
4.375

B D D D B D B 3
W ~ WLV -

Dt D Dt e D e e

W & N W W

- 8 &t 8 0 8 0

.15
.15

.15

‘-,




When an illustrative matrix conforms to the tau-equivalent model,
each part 1s of length 1/K by definition. When an illustrative matrix -
conforms to the congene'fic model, the largest part is arbitrarily set
equal (to four times the length of the smallest pgrt. The fengtl,is of Ehé

- parts, that 13: the values of ) y° are «:lndicate'd to the right of each’
.rov in the matrix. The true score variance was arbitrarily set equal to
150 for ail population matrices.

The approximate standard errors of the three coefficients conpu.ted
fo; the eight 111mtrat1ﬁ matrices are ?Eesented in Table 3. v”men the
part-tests are tau-equivalent, the standard error of coefficient alpha
(ru) ‘is- also included. It was computed via the delta method rather thén
fro?'its tr e sampling distribution, which is (1-p)F v, "z’ in order to
'a_chieve greater comparability to the other standard errors. The divisor
of all of /the standard erroﬁs,‘rﬁ.- , has been omitted from the values
:I.n] Table 3. Table 4 presents the standard errors evaluated for sample
sizes of 50, 100, and 200. |

The sample value ﬁf’ Tpo and its theoretical stan;lard eﬁor will be
affected, to a mlldepgree, by the row sum chosen as the divisor in
computing Dl s °°°s D! + (The population parameter p., does not depend
on this choice.) The results presented here are based on the use of the
row one sum as the divisor. However, the variances obtained by the use
of other rows are very close to the results obtained here.

The sample value of r ‘

4
the numerical values of the variances and covariances for the three parts

and the varisnce of T are dependent upon

34
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i

.- e TABLE 3

TheoreciealiStandard-Errors Times ./ N~1

" Congeneric
i p = .6 p = 833
rPl .6985 .2937
K= 4 Tpo .6993 .2941
Ty 7055 2961
Ty .6149, .2571
K=28 Tpo .6151 . .2571
T .7055 .2939
} K .
" Essential Tau-Equivalence
K= 4 Tpo .6512 2744
rK .7765 .3288
r. . - .6513 2744
a o
™m - 6052 | +2536
K.=8 FFZ - 6052 . .2536
Iy .7765 - .3288
T, .6053 . 2543




Theoretical

TABLE 4

Standard Errors for Three Sample Sizes

Congeneric
P = .6 X p = .833
‘ 50 100 200 50 100 200
T .0997 . .0702  .0495 .0619  .0295  .0208
r, 1007 .0709 .0500 .04623  .0297  .0209
*r .0878 .0618 .0435 .0367 .0258  .0182
g =8 TR {0878  .0618  .0436 _ .0367 .0258  .0182
T .1007 .0709  .0500 .0419 .0295  .0208
Essential Tau-Equivalence
] Th .0930 .0654 .0461 0392  .0275 .019
Tpy .0930 .0654 .0461 .0392  ,0275  .0194
K=4 « .1109 .0780  .0550 0469  .0330 .0233
o, .0930 .0656 .0462 .0392 - .0275 .0194
T .0864 .0608 .0429 .0362 .0255 .0180
gag Tpp . 0866 .0608  .0429 .0362 .0255 .0180
Ty .1109 .0780  .0550 .0469 .0330 .0233
'ra .0865 .0608 .0429 .0363 .0256 .0180

36 -
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of the measure. Different values can occur from the different ways in
which a four;part (or more) test is reduced to three parté. In general,
‘the more nearly equal the parts, the smaller is the standard error. To
achieve maximum part-test homogeneity, the four-part tests were reduced
to three by combining parts three and four. - The eight-part tests were

-

reduced to thrée by combining parts one with two, three with four, and

‘five ﬁhrough eight.

The results in Table 3 and 4 show that the standard errors of T,
. Y
and er, each of which maintain the identity of all parts and all inter-

part covariances, decrease from K = 4 to K= 8. For example, under a

I

congquric test with p = .6 and N = 50, the standard error of rFi is .0997

with K = 4 and .0878 with K = 8. Thus, these coefficients show the same
trend as r_ with increasing numbers of parts. ,

The tables also show that the standard error of Ty is larger than
the others. With K = 4, the difference is small. With K = 8, however,
the ég:ndar& error of rK is thirty per cent greater tpan that of rFl‘and

Tpr "It seems clear that the advantage of T and rp, Over ry depends

F2
on the difference between the original K and K = 3.

Another result of interest is the comparison of the standard errors

of e and Tpo with each other and with that of ru . Even under tau-

equivalence, the standard errors of e and Ty compare favorably to that

of r, - Moreover, the more easily computed congeneric coefficient, Tgy »

is as stable as r, . The latter estimate requires an iterative compu-

tational ﬁracggure which 1s%feasible by hand, but rather tedious.

—— P

&)




- Monte Carlo Confirmation of the

Theoretical Standard Errors

The population matrices in Tables.l%ﬁd 2 were Quaed to generate
- . sample matrices through a procedure developed by Odell and FPeiveson [1966]
h ‘ afd Browne [1968]. Two thm;sa'nd sample matrices were generated under each
of the twenty-four combinations of the following conditions:

Number of part-tests: K=4and K= 8

o

_Population reliability: p = .833 and .6 , - .
Modei: . tautequivalent and co?generic
‘» -  sample size: N = 50, N = 100, N = 200 .
All of the foregoiné coefficients were computed for- each of 2000
sample matrices under each ;:onfiguration. In addition, the Mayekawa and
Haebara [1986] least squares coefficient for congeneric tests, &esignated ’
TR was computed for conpargtive purposes for each sample matrix. The
M empirical Jtandard errors are reported in Table 5. The diff;rences be-
| | tween the Monte Carlo and theoretical ustandgrd erv:bxé;v and ti/le per cent
deviation from t;xe theoretical values, are presented in Table 6.
3 , The theoretical approximations by the delt\a'i" method agree fairly
closfe]{y/with the'eupirical estimates of the standard erm;'sa of Ty ® fFZ .

/' and g - The largest differences occur in instances where negative sam-

- tive sample covariances must t;e assumed not to occur for valid application
of the delta method.) The same issue probably accounts for the empirical

standard errors of. r, being substantially greater than the theoretical

e s

ple covariances were more like;'}v, that 18, with p = .6'and N -'50. (Nega- ~
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EH

Standard. Errors of Monte Carlo Si;pling Distributions |

TABLE S

|

Congeneric
p = .6 \\‘p = .833
) N= 50 100 * 200 ‘50 100 . 200
oy .0960 .0719  .0515 .0433  .0307 .0220
=4 TR .0958°  .0717~ " .0515 .0432  ,0307 .0220
Ty .0972  .0720 .0515 .0435 .0308 .0221
Ts .0981- .0730 ~ .0516 .0435 ' .0307 .0220°
e 1 .0784  .0613  .0439 .0380 .0270 .0184
K=8 Tp .0770 .0613  .0438 .0379  .0270  .0184
Ty .0952 .0688  .0497 .0434  .0307 .0209
) T L0845 .0640  .0448 .0386 .0273  .0185
f Essential Tau-Equivalence
T ..0842  .0639  .0464 .0405  .0287  .0203
T .0830 ..0630 .0462 - .0404 .0286 .0203
k=4 Tk 1133 - .0919  .0648 .0497  .0349  .0245,
\ T, .0893  .Q671  .0476 .0422  .0292  .0206
| rg .0845  .0641  .0465 .0405 .0287 .0203
. :
T .0754  .0594  .0436 .0375 .0267 .0184
K =8 }rz .0758  .0581  .0442 .0372 .0266 .0184
r, .1133 ' .0883  .0646 .0498  .0344  .0243
r, - .0775  .0610  .0443 .0387 .0271 \.0185
Tig .0816  .0607  .0438 .0377- .0267  .0184
\J \ B
B . ~ ‘

A



TABLE 6’
Differencgs Between Monte Carlo and Theoretical
; Standard Errors, and Per (Cent Deviation
. - ‘ o from Theoretical Values * ¢ 3 :
. . B . . : ) . . p ".::f
! Congeneric Measures ’ ! o
b ¢ h
N -
p=.6 p = .833

N = 50 100 200 * 50 , 100 " 200
rFl' .0038(3.8%) ° .0017(2.4%)" - .0020(4.0%) ' .0013(3.1%)  .0012(4.1%) - .0012(5.8%)

- - M hd * . . ) * "i,
g = 4 Tpp —-0041(4.1Z)  .0014(2.0%)  .0019(3.8%) ' .0012(2.9%)  .0011(3.7Z) ° .0011(5,32)

r, 0036(3.5%) °.0011(1.6%)  .0015(3.0%)  ..0012(2.8%) . .8010(3.4%)  .0010(4.8%) -
0 (? . - ' . i
r; --0095(10.8%) -.0005(0.87)  .0003(0.7%)  .0013(3.5%)  .0012(4.7%)  .0002(1.1%) °
g = g Tpp —+0109(12.4%) -.0005(0.82)  .0002(0.5%) .0012(3.3%)  .0012(4.7%)  .0002(1.1%)
r, ~.0056(5.67) -.0021(3.0%) ..0003(0.67)  .0014(3.3%)  .0012{4.1%)  .0001(0.5%) |
Tau«Equi%alent Measures ;
rp, --0088(9.5%) -.0016(2.47)  .0002(1.62) ~ .0013(3.3%)  .0011(4.0%) .0008(4.1%)
. g = 4 Tpy -+0100(10.8%) -.0025(3.82)  .0000(0.0%)  .0012(3.1%) .0010(3.6%)  .0008(4.1%) -
i r, .0024(2.22)  .0139(17.8%) .0098(17.8%)  .0027(5.7%)  .0019(5.7%) - .0012(5.2%) -
r, -.0037(4.0%)  .0017(2.6%) ©.0014(3.0%)  .0030(7.7%)  .0017(6.2%)  .0012(6.2%) -

rp, --0111(12.8%) -.0014(2.37)  [0007(1.6%)  .0013(3.6%)  .0011(4.3%) .0004 (2.2%)

g = g Tpp ~-0107(12.4%) -.0027(4.4%)  .0013(3.0%)  .0010(2.8%)  .0010(3.92)  .0004(2.22)

r, -0024(2.22)  .0103(13.2%) .0096(17.5%)  .0028(6.0%)  .0014(4.2%) . .0010(4.3%)

T, -.0090(10.4%) .0002(0.32) .0014(3.3%) .0024(6.6%)  .0015(5.9%)° .0065(2.82)

CF - N -

R * Computed from data taken to six decimal places

¥ .
2
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limitatioqg/Gf the delta method. '

/
-~

Conelusions and Recommendations :

‘ The(pheoréfical and empirical standard errors lead to the following

- conclusions: ) , . " - N

-

1) For the congeneric c?seqand K = 4, the standard efrors of rF1 ,

¢

Tpy o Ty and ?L

S"exhibit no important differences with samples :
_ - » - * i
= 50 or gréater. But with K = 8, the standard error of Ty is gub-
- !

stantiqlly larggr than those Of.rFl" Tpo and Iig .

2) 1In almost all cases the standard errors of rg, and rp, are smaller

; than those of the other coefficients. This finding alse holds true
3 ) / AR

under tau-equivalence, in .which r, was included among ﬁhe comparisons.

3) The coefficieﬁts which maintain the identity of the parts and are
u -

based on the full set of part-test variances and c3Yariances (rFl R °

rLS) exhibit decreasing standard errors!/ as the number

;ti - er ’ ra " >
of pért-tests increased from four to eight. Thesstandard error of a
; .

Kristof coefficient did not depend on the original number of parts

before combination. E / )
'4) In every comparison the standard errors of r?i and rfz show no . 'é

o

material difference. To achieve this approfimate equality it may

be ngcessar§ to use the largest part-test tﬁ define the pivot row
1

for*er.




L

The bias of all the coefficients was also examined in the Monte
carlo study. None of the' coefficients exhibited any substantial bias

except cozificient alpha under the congeneric case. The negative bias
* 7

of ra in this sii:uation was to be expected.
Which of these coefficients is to be preferred for a measure with
congeneric parts depends on the factors of most importance to the

researcher., In terms of computational simplicity, Tro and Iy have a

distinct advantage over rFl and rLS . (Coefficient r, . is probably

LS

' L3
impractical without a computer routine for its computaiion.) In terms

- of their standard errors rFl » Tpo and Iig are preferable to rK . If

uniqueness is considered an advantage--in the cense that for a given

%

set of data arbitrary decisions do not affect the computed reliability

coefficient--then L3501 and Iis are preferred ovar Tpo and Ty

As a compromise the authors favor Tpo * No disadvantage is associ- -

<
¢

ated with this coefficient in terms of standard error. Computation is

not difficult once the part-test variance covariance matrix is available.A

Monte Carlo simulation data suggest that the row with the largest sum of

elements serves ﬁell as the pivot row. If the researcher is uncertain

whether tpe parts can be assumed to be tau-equivalent or can be regarded

to be only congeneric, Tpo loses no advantage that coefficient alpha ’

might be though;/téghave. Coefficient Tro is as adequate as alpha for

truly tau-€c-ivalent .parts and quite superior to alpha with congeneric

parts.
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